Erasmus University Rotterdam

Extensions in Joint Modeling of Survival and Longitudinal Outcomes

Magdalena Murawska

m.murawska@erasmusmc.nl

Department of Biostatistics Erasmus University Rotterdam

> PhD Defence 24th April 2014

RASMUS UNIVERSITEIT ROTTERDAM

Magdalena Murawska

Doctoraat Presentatie

Extensions in Joint Modeling

1 / 33

Erasmus University Rotterdam

Outline

Introduction What Instead of Joint Modeling?

Motivating Data Sets

Joint Modeling: What Is New in The Thesis?

Some Results Dynamic Predictions Tool Dynamic Prediction Tool Implementation

Final Remarks

Introduction

Motivating Data Sets Joint Modeling: What Is New in The Thesis? Some Results Final Remarks

Erasmus University Rotterdam

Introduction

Setting

- Longitudinal responses collected together with event history data for each patient
- Example: CD4 cell counts taken at different time points related to time to death
- Such data need to be jointly analyzed
 to properly account for the association between longitudinal an survival processes
- When focus on longitudinal outcome: events cause nonrandom dropout
- When focus on event times:

longitudinal responses is internal time-dependent covariate

- cannot be simply included in relative risk model

Erasmus University Rotterdam

Introduction: What Instead of Joint Modeling?

Focus on Event Time outcome: standard approaches

- Use only the last available measurement: valuable information discarded
- Time-dependent Cox model: assumes that time-dependent covariate process is exogenous

Definition: Exogenous time-dependent covariate

- Kablfeisch and Prentice: path at future time point t not affected by the occurrence of event at time s ≤ t
- Only applies in some circumstances, e.g. environmental factors
- Does not hold for biomarkers!
- Measurement error

Introduction Motivating Data Sets

Joint Modeling: What Is New in The Thesis? Some Results Final Remarks

Erasmus University Rotterdam

Introduction

Focus on longitudinal outcome

- Consider different types of processes that may cause missingness in longituidnal response:
- Little and Rubin: Missing Completely At Random (MCAR), Missing At Random (MAR), Missing Not At Random (MNAR)
- Under MNAR dropout process cannot be ignored: joint distribution of the dropout and longitudinal processes needs to be modeled
- Use pattern mixture, selection or shared parameters models
- First two approaches mainly applies for discreet time, last can handle both discreet and continuous time-to-dropout
- In this thesis only last approach considered

Erasmus University Rotterdam

Motivating Data Sets

Renal Data

- Prospective trial on kidney-transplant patients with 2 methods of kidney storage prior to transplantation surgery
- Cold storage vs machine perfusion (MP)
- Only MP arm analysed
- Nonlinear resistance level (RR): kidney flow
- Aim: use RR (and some baseline covariates) to predict time to allograft failure

Erasmus University Rotterdam

Motivating Data Sets

Magdalena Murawska

Doctoraat Presentatie

Extensions in Joint Modeling

7 / 33

Erasmus University Rotterdam

Motivating Data Sets

Heart Data

- 2921 heart recipients on waiting list
- Each classified to states: Transplantable (T), Non-Transplantable (NT), Urgent (U) and High Urgent (HU)
- Competing risks: Death (D), Transplantaion (TT), Removal (R)
- Aim: predict future state and estimate the risk of any of the 3 competing events using the available history (and baseline covariates)

Erasmus University Rotterdam

Motivating Data Sets

Erasmus University Rotterdam

Motivating Data Sets

Aortic Data

- Valve stenosis (AS) is a disease of heart valves
- 285 AS patients received human tissue valve in aortic position
- Patients received sub-coronary implantation (SI) or root replacement (RR)
- Using velocity of blood through valve pressure gradient across valve can be calculated (aortic gradient)
- Aim : predictions of re-operation-free survival using longitudinal aortic gradient (and baseline covariates)
- Composite event: re-operation or death (no competing risks here)

Erasmus University Rotterdam

Motivating Data Sets

Doctoraat Presentatie

Erasmus University Rotterdam

Joint Modeling: What Is New in The Thesis?

Chapter 2: Two-Stage Procedure

- Applied for Renal Data
- Longitudinal responses taken before actual follow-up for time-to-event initiated
- Survival will not affect longitudinal process, measurement error remains
- 1st step: summarize longitudinal information with nonlinear mixed-effects model
- 2nd step: include Empirical Bayes estimates of subject-specific parameters as predictors in Cox model
- To correct for plug-in uncertaininty: Monte Carlo approach to sample from the posterior distribution of the random effects given the observed data

Erasmus University Rotterdam

Joint Modeling: What is New in The Thesis?

Chapter 3: Multi-State Models for Nominal Longitudinal Response

- Applied for Heart Data
- Simple method for modeling of nominal longitudinal response in presence of competing risks
- Pseudo-values approach of Andersen et al. applied for Aalen-Johansen estimator of state occupation probabilities
- Pseudo-values: uses idea of jackknife statistic constructed for non-parametric estimator
- Simpler and straightforward alternative comparing to other non-standard methods available for non-Markov models

Erasmus University Rotterdam

Joint Modeling: What is New in The Thesis?

Chapter 4: Joint Models for Nominal Longitudinal Response

- Applied for Heart Data
- Alternative to multi-state models approach
- Bayesian model for joint modeling of categorical non-final (U, HU, T, NT) longitudinal statuses and time-to-event response with competing risks (D, R, TT)

Erasmus University Rotterdam

Joint Modeling: What is New in The Thesis?

Chapter 4: Submodel for Nominal Longitudinal Response

- multinomial logit mixed model to model probabilities of states
 s = U, HU, T, NT
- $logit(P(Y_i(t) = s_r)) = w_{ir}(t) = x_i^T(t)a_r + z_i^T(t)b_{ir},$ $r = 1, 2, ..., R-1, \quad i = 1, 2, ... N$
- $b_{ir}^{T} = (b_{i1}^{T}, b_{i2}^{T}, \dots, b_{ir}^{T}), \ b_{ir} \sim N(0, \Sigma_{r})$
- $x_i(t)$ -vector of covariates
- z_i(t) design vector for random effects

Erasmus University Rotterdam

Joint Modeling: What is New in The Thesis?

Chapter 4: Submodel for Survival Response

- $T_{i1}^*, T_{i2}^*, \ldots, T_{iK}^*$ true failure times for individual *i*
- We observe only $T_i = \min(T_{i1}^*, T_{i2}^*, \dots, T_{iK}^*, C_i)$, C_i -censoring time, Δ_i -failure ind.
- Relative risk submodel for each cause of failure k:
- $\lambda_{ik}(t) = \lim_{s \to 0} \mathsf{P}(t \le T^*_i < t + s, \Delta_i = k \mid T^*_i \ge t)/s =$
- $=\lambda_{0k}(t)\exp(\gamma_k^T b_i + \beta_k^T v_i), k = 1, \dots, K,$ $b_i^T = (b_{i1}^T, b_{i2}^T, \dots, b_{ir}^T)$
- v_i baseline covariates
- sharing all random effects b_i with multinomial logit model
- cause-specific baseline hazards $\lambda_{0k}(t)$ modeled as piecewise constant function

Erasmus University Rotterdam

Joint Modeling: What is New in The Thesis?

Chapter 4: Joint Models for Nominal Longitudinal Response

- Bayesian model used for dynamic predictions
- Dynamic Predictions: update prediction of the risk of event based on current available longitudinal profile
- Monte Carlo approach used to update cumulative incidence functions (CIF)
- 1st step: sample from posterior distribution of random effects
- 2nd step: update CIF
- Different parametrizations of Bayesian joint model examined

Erasmus University Rotterdam

Joint Modeling: What Is New In The Thesis?

Chapter 5: Joint Models versus Landmarking

- Applied for Aortic Data
- Comparison of joint modeling technique for making dynamic prediction with landmarking
- Landmarking: survival probabilities from a Cox model fitted to patients still at risk at time point of interest (landmark time)
- Different measures of discrimination and calibration presented
- Different parametrizations of joint models examined

Erasmus University Rotterdam

Dynamic Predictions Tool

19 / 33

Erasmus University Rotterdam

Erasmus University Rotterdam

Erasmus University Rotterdam

Erasmus University Rotterdam

Erasmus University Rotterdam

Dynamic Predictions Tool

Magdalena Murawska

Doctoraat Presentatie

Erasmus University Rotterdam

Dynamic Prediction Tool Implementation

- Dynamic predictions: easy to use through www
- R code can be implemented using shiny R package

Erasmus University Rotterdam

Dynamic Prediction Tool Implementation

Input Patient

Choose a bloodgroup:	CI	hara
A	•	resp
Choose a gender:	1	4
Male	• 2	1
Choose an IC group:	3	3
IC	• *	Do
Disease:	[1) ")
Age:	•	
50		
Number of measurments:		
3		
Measurement 1		

haracteristics	Longitudinal	& CIF Plot	All plots	n
rial acteristics	Longituumai	a cir fiùi	All plots	

ots Data

	response	status	time	person	gender	age	blood	IC	disease
1	4	т	0.027359781121751	1	Male	50	A	IC	DCM
2	1	NT	0.136798905608755	1	Male	50	A	IC	DCM
3	3	U	0.820793433652531	1	Male	50	A	IC	DCM

Download data

[1] "Not updated"

Erasmus University Rotterdam

Dynamic Prediction Tool Implementation

Input Patient

Erasmus University Rotterdam

Dynamic Prediction Tool Implementation

Input Patient

Doctoraat Presentatie

Erasmus University Rotterdam

Dynamic Prediction Tool Implementation

Doctoraat Presentatie

Erasmus University Rotterdam

Several Assumptions

- Visiting and censoring processes assumed noninformative
- Chapter 3: under MAR, joint modeling approach allows for ignorable visiting and censoring processes
- Much more complicated when using multi-state modeling approach
- Conditional independence : longitudinal and survival processes independent conditional on shared terms
- When violated MAR does not hold
- Normal distribution for the random effect: influences only their prior distribution, not a problem for large number of measurements per subject
- Sensitivity analysis recommended anyway

Erasmus University Rotterdam

Conclusions

- Chapter 4: parametrization for a joint model may influence predictions, mainly for the survival part
- Chapter 4: misspecification of joint model omitting the time-dependent terms more severe for strong association between survival and longitudinal process
- Which model is the best?
- Sensitivity analysis again

Erasmus University Rotterdam

Conclusions /Future Work

- Model selection problem in joint modeling still under investigation
- Problems with residuals due to dropout: reference distribution of residuals not certain
- Solution 1: use multiple imputation idea to impute missing patterns and apply standard diagnostics
- Solution 2: Bayesian model averaging
- Solution 3: use measures from Chapter 5 (calibration and discrimination of predictions)
- Measures from Chapter 5 need to be developed for competing risks setting

Motivating Data Sets Joint Modeling: What Is New in The Thesis? Final Remarks

Erasmus University Rotterdam

THANK YOU!

zafing

RASMUS UNIVERSITEIT ROTTERDAM

Magdalena Murawska

Doctoraat Presentatie

Extensions in Joint Modeling

33 / 33