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Dynamic Prediction

• Use repeated measurements of specific biomarkers to assess risk of death

• Example: CD4 in HIV study

• Dynamic prediction: update of survival probability as more measurements are
available

• We compare two approaches for producing dynamic predictions of survival
probabilities

• landmarking (van Houwelingen and Putter, 2011)

• joint modeling (Henderson et al.,2002, Yu et al., 2008, Rizopoulos, 2012)



Joint Modeling Approach

• Joint Modeling Approach:

• reconstructs true evolution of biomarker

• uses the true values of biomarker in survival model





Joint Modeling Approach

• Two submodels for longitudinal and survival processes

• For continuous longitudinal markers usually a linear mixed model is used:

yi(t) = mi(t) + ϵi(t) = xTi (t)β + zTi (t)bi + ϵi(t)

mi(t) - true value of the longitudinal marker at time t

β - vector of the fixed-effects parameters

bi ∼ N(0, D) -vector of random effects

xi(t) and zi(t) - design matrices for the fixed and random effects

ϵi(t) - measurement error, ϵi(t) ∼ N(0, σ2)



Joint Modeling Approach

• For survival process standard relative risk model

λi(t) = λ0(t) exp(α
Tf (t, bi) + γTvi)

• shares some common (time-dependent) term f (t, bi), with longitudinal model

vi - vector of baseline covariates, γ - vector of associated coefficients

α - measure the strength of association between longitudinal and survival processes



Joint Modeling Approach

• Based on fitted model dynamic predictions for new subject k constructed

• We predict conditional probability of surviving time u > t given that subject k has
survived up to t:

Sk(u | t) = Pr(T ∗
k > u | T ∗

k > t, Yk(t))

Yk(t) - longitudinal profile for subject k at time t, T ∗- true survival time

• Sk(u | t) can be written as Bayesian posterior expectation:

Sk(u | t) =
∫

Pr (T ∗
k > u | T ∗

k > t, Yk(t),Sn; θ)p(θ | Sn)dθ (*)

θ - vector of parameters from joint model, Sn - a sample of size n on which joint
model was fitted



Joint Modeling Approach

• Let f (bi, t) = bi. First part of the integrant (*) can be written as:

Pr (T ∗
k > u | T ∗

k > t, Yk(t),Sn; θ)

=

∫
Pr (Tk < u | T ∗

k > t, bk; θ)× p (bk | T ∗
k > t, Yk(t), θ) dbk

• Monte Carlo approach used to compute Sk(u | t) for patient k and Sk(u | t′)
updated for every time point t′ > t



Joint Modeling Approach

• For each individual k given available longitudinal profile Yk(t):

• Step 1: sample b
(l)
k from posterior {bk | T ∗

k (t), Yk(t); θ}
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Landmark Approach

• Landmark method simplifies the longitudinal history Yk(t) to the last value yk(t)

• Dynamic predictions obtained by adjusting the risk set and refitting Cox model:

• landmark time tL chosen

• for tL landmark data set LL constructed: selecting individuals at risk at tL

• Cox model fitted for LL

• Advantage of JM approach: possibility of defining different association structure
between longitudinal and survival processes



Motivating Data set

• PBC study

conducted by Mayo Clinic between 1974 and 1984

• For patients with PBC serum bilirubin is known to be a good marker of progression

• Aim: find which characteristics of serum bilirubin profile are most predictive for death

• Longitudinal serum bilirubin level Yi(u) modeled by mixed effects model

• natural cubic splines to account for nonlinear character of marker evolution

• interaction terms between B-spline basis and treatment group to model different
trajectories for 2 treatment groups
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Motivating Data set

• For survival process standard relative risk model with different forms of the
association structure:

I λi(t) = λ0(t) exp{γTvi + α1mi(t)}
II λi(t) = λ0(t) exp{γTvi + α1mi(t) + α2m

′
i(t)}

III λi(t) = λ0(t) exp
{
γTvi + α1

∫ t

0

mi(s)ds
}

IV λi(t) = λ0(t) exp{γTvi + αTbi}.
(1)

Baseline hazard λ0(t) modeled parametrically using Weibull distribution, i.e:
λ0(t) = ϕtϕ−1



Different parameterizations of Joint Model

• In J-M where only random effects are shared likelihood is of the (closed!) form:

p(Ti,∆i | bi, θ, β) =
[
λ0(Ti) exp(α

Tbi + γTvi)
]I(∆i=1)×

exp
(
−
∫ Ti
0 λ0(s) exp(α

Tbi + γTvi)ds
)

◃ Dependence on s only through piecewise constant baseline hazards λ0(s)

• Problem arises when time-dependent term shared:∫ Ti
0 λ0(s) exp(α

Tfi(s) + γTvi)ds

◃ Solution: use quadrature points to approximate the integral



PBC Data

• Differences between prediction from joint models I-IV and landmark approach
observed

• Different joint models compared using DIC criterion → best Model I (td-value)
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Simulation Study

• Data simulated data using joint models with different association structure I-IV

• Baseline hazard simulated using Weibull distribution

• Censoring kept at 40-50%

• In each scenario 10 censored pts excluded randomly from each simulated data set

• For remaining patients joint models I-IV fitted

• For excluded patients predictions from joint models I-IV and landmarking compared
at 10 equidistant time points to predictions from gold standard model (model with
true parametrization and true values of parameters)

• Standard landmark model extended: current value+slope (LM2), current value+area
(LM3)
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Discrimination. Calibration

• Compare calibration and discrimination between two approaches in a simulation study
using:

• Expected Prediction Error (Henderson et al 2002) (PE)

• Integrated Prediction Error (Schemper and Henderson 2000) (IPE)

• AUC and dynamic concordance index C∆t
dyn



Discrimination

• Focus on time interval when the occurence of event is of interest (t, t +∆t]

• Based on the model we would like to dicriminate between patients who are going to
exprience the event in that interval from patients who will not

• For the first group physiscian can take action to improve survival during (t, t +∆t]

• For c in [0, 1] we define Sk(u | t) ≤ c as success and Sk(u | t) > c as failure

• Then sensitivity is defined as:

Pr{Sk(u | t) ≤ c | T ∗
k ∈ (t, t +∆t]}

• And specificity as:
Pr{Sk(u | t) > c | T ∗

k > t +∆t}



Discrimination

• For random pair of subjects i, j that have measurments up to t discrimination
capability of joint model can be assesed by area under ROC curve (AUC) obtained by
varying c:

AUC(t,∆t) = Pr[Si(u | t) < Sj(u | t) | {T ∗
i ∈ (t, t +∆t]} ∪ {T ∗

j > t +∆t}]

• Model will assign higher probability of surviving longer that t +∆t for subject j who
did not experience event

• To summarize model discrimination power weigthed average of AUCs used:

C∆t
dyn =

∞∫
0

AUC(t,∆t}Pr{E(t)}dt
/ ∞∫

0

Pr{E(t)}dt (dynamic concordance index)

E(t) = [{T ∗
i ∈ (t, t +∆t]} ∪ {T ∗

j > t +∆t}]
Pr{E(t)}-probability that pair {i, j} comparable at t



Discrimination

• C∆t
dyn depends on ∆t

• In practice:

Ĉ
∆t

dyn =

15∑
q=1

ωq
ˆAUC(tq,∆t)× P̂r{E(tq)}

15∑
q=1

ωqP̂r{E(tq)}

ωq-weights for 15 Gauss-Kronrod quadrature points on (0, tmax)

P̂r{E(tq)} = {Ŝ(tq)− Ŝ(tq +∆t)}Ŝ(tq +∆t)

Ŝ(· )-Kaplan-Meier estimator of marginal survival function S(· )



Discrimination

• AUC is estimated as:

ˆAUC(tq,∆t) =

n∑
i=i

n∑
j=1,j ̸=i

I{Ŝi(t +∆t | t) < Ŝj(t +∆t | t)} × I{Ωij(t)}

I{
n∑
i=i

n∑
j=1,j ̸=i

Ωij(t)}

• Comparable pairs are those that satisfy:

Ωij(t) = [{Ti ∈ (t, t +∆t]} ∩ {δi = 1}] ∩ {Tj > t +∆t} or

Ωij(t) = [{Ti ∈ (t, t +∆t]} ∩ {δi = 1}] ∩ [{Tj = t +∆t} ∩ {δj = 0}]



Calibration

• Expected Prediction Error (Henderson et al 2002):

PE(u | t) = E[L{Ni(u)− Si(u | t)}]

Ni(u) = I(T ∗
i > u)

L(· )-loss function (absolute or square loss)

ˆPE(u | t) = {R(t)}−1
∑
i:Ti≥t

I(Ti > u)L{1− Ŝ(u | t)} + δiI(Ti < u)L{0− Ŝ(u | t)}

+(1− δi)I(Ti < u)[Ŝi(u | Ti)L{1− Ŝ(u | t)} + {1− Ŝ(u | Ti)}L{0− Ŝ(u | t)}]

R(t)-number of subjects at risk at t



Calibration

• PE(u | t) measures predictive accuracy only at u using longitudinal information up
to time t

• To summarize predictive accuracy for interval [t, u] and take into account censoring

weighted average of PE(s | t), t < s < u considered, similar to Ĉ
∆t

dyn

• Integrated Prediction Error (Schemper and Henderson 2000):

IPE(u | t) =

∑
i:u≤Ti≤t

δi{ŜC(t)/ŜC(Ti)} ˆPE(u | t)∑
i:u≤Ti≤t

δi{ŜC(t)/ŜC(Ti)}

ŜC(· )- Kaplan-Meier estimator of censoring distribution



P̂E(9|7) IP̂E(9|7) AÛC(9|7) Ĉ
∆t=2

dyn

JM1: value 0.201 0.118 0.787 0.854

JM2: value+slope 0.197 0.114 0.793 0.855

JM3: area 0.191 0.112 0.758 0.809

JM4: shared RE 0.191 0.108 0.807 0.840

CoxLM 0.229 0.130 0.702 0.811

• Results for PBC data set will indicate different best model than DIC



Extensions

• Different types of longitudinal outcome (binary, categorical)

• Multiple longitudinal outcomes

• Multiple event times (Competing risk setting)



Motivating Data Set 2 : Heart Data

• Data from Eurotransplant Heart recipient waiting list (2921 recipients)

• During follow-up patients are evaluated as:

◃ Transplantable (T)

◃ Urgent (U)

◃ High-Urgent (HU)

◃ Non-Transplantable (NT)

• Patient is excluded from the list when:

◃ Death (D)

◃ Transplanted (TT)

◃ Removed (from other reasons than transplantation) (R)



Heart Data cont.

• Different evaluation points

◃ First evaluation time point at the moment of entering on the waiting list (time 0)

◃ Next evaluation time points depend on the previous state

• At baseline (time 0) patient characteristics available:

◃ age

◃ country : 7 centers categorized in IConsent and Non-IConsent

◃ blood group (A, B, AB, 0)

• Aim: predict patient’s urgency status and asses risk of D/R/TT

using available history & adjusting for baseline covariates



Joint Modeling Approach

• Modeling transient states : U, HU, T and NT as categorical longitudinal response

• Modeling the risk of final events: R, D or TT

• Categorical response cannot be ordered (due to NT state)

• Competing risks (D,TT,R)

• Similar procedure as above to update conditional CIF dynamically



Joint Model (J-M). Submodels specification

• Longitudinal submodel:

multinomial logit mixed model to model probabilities of states s = U,HU, T,NT

logit(P (Yi(t) = sr)) = xTi (t)ar + zTi (t)bir, r = 1, 2, . . . , R− 1, i = 1, 2, . . . N

bTir = (bTi1, b
T
i2, . . . , b

T
ir), bir ∼ N(0,Σr)

xi(t) -vector of covariates

zi(t) - design vector for random effects



Joint Model. Submodels specification

• Let T ∗
i1, T

∗
i2, . . . , T

∗
iK - true failure times for individual i

• We observe only Ti = min(T ∗
i1, T

∗
i2, . . . , T

∗
iK, Ci), Ci -censoring time, ∆i -failure ind.

• Relative risk submodel for each cause of failure k:

λik(t) = lim
s→0

P(t ≤ T ∗
i < t + s,∆i = k | T ∗

i ≥ t)/s =

=λ0k(t) exp(γ
T
k bi + βT

k vi), k = 1, . . . , K, bTi = (bTi1, b
T
i2, . . . , b

T
ir)

vi - baseline covariates

◃ sharing all random effects bi with multinomial logit model

◃ cause-specific baseline hazards λ0k(t) modeled as piecewise constant function

◃ γ - measure of strength of association between longitudinal and survival processes
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Extensions

• Landmark approach can be also extended using causes-specific hazards

• Fine-Gray type approach combined with landmarking(Cortese and Andersen (2010))

• Pseudo-values approach



Final Comments/Current Work

• In context of time-dependent ROC curves Heagerty et al.(2005) proposed several
definitions of cases and controls

• Saha and Heagerty (2010) and Zheng et al. (2012) extended definition for competing
risks setting

• Explore different methods of classifying subjects and use similar sampling procedure
to estimate ROC in joint modeling framework

• This extension could be applied to fully Bayesian model for competing risks presented
above

• Joint models for continuous longitudinal outcome implemented in JM and JMBayes

• Landmark approach : dynpred
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Additional Slides

P̂E(11|9) IP̂E(11|9) AÛC(11|9) Ĉ
∆t=2

dyn

JM1 0.05379544 0.1299842 0.5977982 0.6174411

JM2 0.05287227 0.1276448 0.5966166 0.6243637

JM3 0.05163110 0.1245160 0.5578209 0.5820453

JM4 0.07623901 0.1852797 0.5595386 0.5766765

LM1 0.06042414 0.1225664 0.6204565 0.6408248

LM2 0.06036801 0.1223102 0.6234404 0.6472022

LM3 0.06038512 0.1224577 0.6220706 0.6315361



Scenario

I II III IV

γ0 −6.73 −6.73 −6.73 −6.73

γ1 0.41 0.41 0.41 0.41

α1 0.7 0.05 0.08 −0.3

α2 3.3 −0.8

α3 0.3

α4 0.8

σt 1.65 1.65 1.65 1.60


